为什么每朵雪都不一样
㈠ 为什么每片雪花都不一样政治哲学
这是哲学上的经常用的一种说法、很细微的来说每片雪花的冰晶组成、分子结构组成都是不可能完全一模一样的
㈡ 为什么每一片雪花都不一样
当水分子自我排列成固态的雪或冰时,雪花即反映了水分子的内在秩序。当水分子开始凝结时,彼此间形成微弱的氢键。雪花的形成(及所有物质由液态转变成固态的过程)叫做结晶作用。分子们彼此依最低能量状态排列,这使得它们之间的吸引力最大而斥力最小。地球上的水冰中,每个分子都以氢键与另外四个分子相连,形成晶格结构。 于是,水分子会移动到已被指定好的空间。最基本的形状是六方柱,顶端与底端都是六角形,六个侧边则是三角形。这个排列过程很像贴地砖:一旦样式选定、并放好了第一片地砖,其他所有的地砖都一定得放到已被决定的位置,才能维持样式。水分子依照低能量的位置自我安顿,便会填入空位并维持对衬;雪花的“手臂”就是以这种方式形成的。 雪花有很多种样子。这些差异产生的原因在于雪花在大气中生成,而大气状况复杂多变。一片雪花结晶可能以某种方式生成,然后因应温度与湿度的改变而有相对的变化。基本的六角形对称仍旧保留,不过冰晶会往新的方向分枝。
——参考文献《网络全知》
㈢ 为什么每一片雪花都长得不一样
雪花的形状极多,而且十分美丽.如果把雪花放在放大镜下,可以发现每片雪花都是一幅极其精美的图案,连许多艺术家都赞叹不止。但是,各种各样的雪花形状是怎样形成的呢?雪花大都是六角形的,这是因为雪花属于六方晶系。云中雪花"胚胎"的小冰晶,主要有两种形状。一种呈六棱体状,长而细,叫柱晶,但有时它的两端是尖的,样子象一根针,叫针晶。别一种则呈六角形的薄片状,就象从六棱铅笔上切下来的薄片那样,叫片晶。
如果周围的空气过饱和的程度比较低,冰晶便增长得很慢,并且各边都在均匀地增长。它增大下降时,仍然保持着原来的样子,分别被叫做柱状、针状和片状的雪晶。
如果周围的空气呈高度过饱和状态,那么冰晶在增长过程中不仅体积会增大,而且形状也会变化。最常见的是由片状变为星状。
原来,在冰晶增长的同时,冰晶附近的水汽会被消耗。所以,越靠近冰晶的地方,水汽越稀薄,过饱和程度越低。在紧靠冰晶表面的地方,因为多余的水汽都已凝华在冰晶上了,所以刚刚达到饱和。这样,靠近冰晶处的水汽密度就要比离它远的地方小。水汽就从冰晶周围向冰晶所在处移动。水汽分子首先遇到冰晶的各个角棱和凸出部分,并在这里凝华而使冰晶增长。于是冰晶的各个角棱和凸出部分将首先迅速地增长,而逐渐成为枝叉状。以后,又因为同样的原因在各个枝叉和角棱处长出新的小枝叉来。与此同时,在各个角棱和枝叉之间的凹陷处。空气已经不再是饱和的了。有时,在这里甚至有升华过程,以致水汽被输送到其他地方去。这样就使得角棱和枝叉更为突出,而慢慢地形成了我们熟悉的星状雪花。
上面说的实际上是一个典型的星状雪花的形成过程。它的相当部位,不论形状或大小,都应当是相同的。这种典型的星状雪花只有在一个理想的、平静的环境中(譬如在实验室内)才能形成。在大气中,它不能象上面说的那样有步骤地增大,所形成的形状也就不能那样典型。这是因为冰晶逐渐在下降着,而且有时在旋转着,各个枝叉接触水汽的多少有所不同,而那些接触水汽较多的枝又便增长得较多。因此,我们平常所看到的雪花虽大体上一样但又互不相同。
另外,雪花在云内下降的过程中,也会从适宜于形成这种形状的环境降到适宜于形成另一种形状的环境,于是便出观了各种复杂的雪花形状。有的象袖扣,有的象刺猾。即使都是星状雪花,也有三个枝叉的、六个枝叉的,甚至有十二个枝叉、十八个枝又的。
以上所述都是单个雪花的情况。在雪花下降时,各个雪花也很容易互相攀附并合在一起,成为更大的雪片。雪花的并合大多在以下三种情况下出观。(1)当温度低于0℃的时候,雪花在缓慢下降的途中相撞。碰撞产生了压力和热,使相撞部分有些融化而彼此沾附在一起,随后这些融化的水又立即冻结起来。这样,两个雪花就并合到一起了。(2)在温度略高于0℃的时候,雪花上本来已覆有一层水膜,这时如果两个雪花相碰,便借着水的表面张力而沾合在一起。(3)如果雪花的枝叉很复杂,则两个雪花也可以只因简单的攀连而相挂在一起。
雪花从云中下降到地面,路途很长,在条件适合时,可以经多次攀连并合而变得很大。在降大雪的时候,有时有一些鹅毛般的大雪片,就是经过多次并合而成的。
但是,有时雪花互碰时不是互相并合在一起,而是给碰破了,这时便产生一些畸形的雪花。例如,在降雪的时候,有时会见到一些单个的"星枝",就属于这种情况。
㈣ 为什么每朵雪花形状并不相同
从天上飘落下来的雪花,除了有一点相同外,它们实际上彼此各不相同。也就是说,每朵雪花都有六个侧翼,这是它们的相同点,但除了六个侧翼或六个尖角之外,从来没有两朵雪花在花形图案上是相同的。雪花的形状其实是千姿百态的,它们是由单个晶体或多个晶体构成。每朵雪花的中心都有一个微粒,通常是尘埃微粒。
㈤ 为什么每一片雪花都不一样
当水分子自我排列成固态的雪或冰时,雪花即反映了水分子的内在秩序。当水分子开始凝结时,彼此间形成微弱的氢键。雪花的形成(及所有物质由液态转变成固态的过程)叫做结晶作用。分子们彼此依最低能量状态排列,这使得它们之间的吸引力最大而斥力最小。地球上的水冰中,每个分子都以氢键与另外四个分子相连,形成晶格结构。 于是,水分子会移动到已被指定好的空间。最基本的形状是六方柱,顶端与底端都是六角形,六个侧边则是三角形。这个排列过程很像贴地砖:一旦样式选定、并放好了第一片地砖,其他所有的地砖都一定得放到已被决定的位置,才能维持样式。水分子依照低能量的位置自我安顿,便会填入空位并维持对衬;雪花的“手臂”就是以这种方式形成的。 雪花有很多种样子。这些差异产生的原因在于雪花在大气中生成,而大气状况复杂多变。一片雪花结晶可能以某种方式生成,然后因应温度与湿度的改变而有相对的变化。基本的六角形对称仍旧保留,不过冰晶会往新的方向分枝。
——参考文献《网络全知》
㈥ 为什么每朵雪花都是6边形,而且每朵雪花都不一样那一片天空中几万朵雪花都不一样形状那太神奇了.
原来雪花的基本组织是冰胚,每一个冰胚是由五个水分子组成的。其中四个水分子虽在一个四面体的顶角上,另有一个水汾子 于四面体中心。许多冰胚互相连接,就组成冰晶,话多冰晶结合,就形成了雪花。因此,雪花之所以呈六角形,是与一些水分子怎样结合成为冰胚,以及冰胚怎样结合成冰晶等有关。
前页冰晶结构图中,每一个圆圈代表一个水分子,把书倒过来看,可以看出六角形结构。可见冰胚的顶底结合,只能使雪花变厚;冰胚的平排结合,却不单可使我们看出最初的六角形结晶来,而且还可以看出由水分子一个一个结合上去,新的六角形结晶是怎样从原有六角形雪花中增长起来的。
光是六形的结合,并不一定能组成很对称的六角形雪花的,根据研究,雪花在空中飘浮时本身还会振动。这种振动,是环绕对称点而进行的。这样,就保证了在增长过程中的雪花,始终保持六角形。至于六角形的千姿百态,则与雪花在空中飘浮时,空中的温度和湿度条件不同有关。
在我国南方,由于近地面空气温度比较高,雪花从空中飘落下来,就会部分融化,变为湿雪花,六角形就会有些破坏。湿雪花在空中互相碰撞,还会粘并起来,形成不规划的鹅毛雪片。
㈦ 为什么雪花的形状都不一样
与水汽冷凝结晶的快慢有关,雪花是由小冰晶增大变来的,而冰的分子以六角形的为最多,因而形成雪花多是六角形的。雪花形状的多种多样,则与它形成时的水汽条件有密切的关系。
㈧ 世界上的每一朵雪花都是一样的形状吗
雪花的基本形状是六角形,但是大自然中却几乎找不出两朵完全相同的雪花,就象地球上找不出两个完全相同的人一样。许多学者用显微镜观测过成千上万朵雪花,这些研究最后表明,形状、大小完全一样和各部分完全对称的雪花,在自然界中是无法形成的。
在已经被人们观测过的这些雪花中,再规则匀称的雪花,也有畸形的地方。为什么雪花会有畸形呢?因为雪花周围大气里的水汽含量不可能左右上下四面八方都是一样的,只要稍有差异,水汽含量多的一面总是要增长得快一些。
世界上有不少雪花图案搜集者,他们象集邮爱好者一样收集了各种各样的雪花照片。有个名叫宾特莱的美国人,花了毕生精力拍摄了近六千张照片。苏联的摄影爱好者西格尚,也是一位雪花照片的摄影家,他的令人销魂的作品经常被工艺美术师用来作为结构图案的模型。日本人中谷宇吉郎和他的同事们,在日本北海道大学实验室的冷房间里,在日本北方雪原上的帐篷里,含辛茹苦二十年,拍摄和研究了成千上万朵的雪花。
但是,尽管雪花的形状千姿百态,却万变不离其宗,所以科学家们才有可能把它们归纳为前面讲过的七种形状。在这七种形状中,六角形雪片和六棱柱状雪晶是雪花的最基本形态,其它五种不过是这两种基本形态的发展、变态或组合。
早在公元前的西汉时代,《韩诗外传》中就指出:“凡草木花多五出,雪花独六出。”雪的基本形状是六角形。但在不同的环境下,却可表现出各种样的形态。
世界上有不少雪花图案收集者,他们收集了各种雪花图案。有人花了毕生精力拍摄了成千上 万张雪花照片,发现将近有六千种彼此不同的雪花,但他死前认为这不过是大自然落到他手中的少部分雪花而已。以致于有人说没有两朵大小和形状完全相同的雪花。
为什么雪花的基本形态是六角形的片状和柱状呢?
这和水汽凝华结晶时的晶体习性有关。水汽凝华结晶成的雪花和天然水冻结的冰都属于六方晶系。我们在博物馆里很容易被那纯洁透明的水晶所吸引。水晶和冰晶一样,都是六方晶系,不过水晶是二氧化硅(SiO2)的结晶,冰晶是水(H2O)的结晶罢了。
六方晶系具有四个结晶轴,其中三个辅轴在一个基面上,互相以60o的角度相交,第四轴(主晶轴)与三个辅轴所形成的基面垂直。六方晶系最典型的代表就象是几何学上的一一个正六面柱体。当水汽凝华结晶的时候,如果主晶轴比其它三个辅轴发育得慢,并且很短,那么晶体就形成片状;倘若主晶轴发育很快,延伸很长,那么晶体就形成柱状。雪花之所以一般是六角形的,是因为沿主晶轴方向晶体生长的速度要比沿三个辅轴方向慢得多的缘故。
千姿百态的雪花
对于一片六角形雪片来说,由于它表面曲率不等(有凸面、平面和凹面),各面上的饱和水汽压力也不同,因此产生了相互间的水汽密度梯度,使水汽发生定向转移。水汽转移的方向是凸面→平面→凹面,也就是从曲率大的表面,移向曲率小的表面。六角形雪片六个棱角上的曲率最大,边棱部分的平面次之,中央部分曲率最小。这样,就使六角形雪片一直处在定向的水汽迁移过程中。由于棱角上水汽向边棱及中央输送,棱角附近的水汽饱和程度下降,因而产生升华现象。中央部分由于获得源源不断的水汽而达到冰面饱和,产生凝华作用。这种凝华结晶的过程不断进行,六角形雪片逐渐演变成为六棱柱状雪晶。(雪片上水汽迁移示意图:fig42)
这是假定外部不输送水汽的理想状况。事实上,事物与周围环境保持着密切的联系,空气里总是或多或少存在着水汽的。如果周围空气输人水汽较少,少到不够雪片的棱角向中央输送水汽的数量,那么雪片向柱状雪晶的发展过程继续进行。在温度很低水汽很少的高纬和极地地区,便因为这个原因经常降落柱状雪晶。
空气里水汽饱和程度较高的时候,出现另外一种情况。这时周围空气不断地向雪片输送水汽,使雪片快速地发生凝华作用。凝华降低了雪片周围空气层中的水汽密度,反过来又促进外层水汽向内部输送。这样,雪片便很快地生长起来。当水汽快速向雪片输送的时候,六个顶角首当其冲,水汽密度梯度最大。来不及向雪片内部输送的水汽,便在顶角上凝华结晶;这时,顶角上会出现一些突出物和枝杈。这些枝叉增长到一定程度,又会分叉。次级分叉与母枝均保持60的角度,这样,就形成了一朵六角星形的雪花。
在高山或极地的晴朗天气里,还可见到一种冰针,象宝石一样闪烁着瑰丽的光彩,人们把它叫做钻石尘。冰针的生长有二种情况:一种是在严寒下(-30℃以下)湿度很小时水汽自发结晶的结果,另一种是在温度较高(-5℃左右)湿度较大时沿着雪片某一条辅轴所在的顶角特别迅速生长的产物,是雪花的畸形发展。
形形色色的雪花晶体在天空生成后,当它们的直径达到50微米时,便能克服空气的浮力而开 始作明显的下降运动,一边飘逸下降一边继续生长变化。这样一来,便产生了形式纷纭繁多的雪花。我们只要把
㈨ 天上落下来的雪花,为何每一片长得都不一样
冬天,许多地方都会下雪。身处温暖南方的人没有福气观赏雪后银装素裹的美景,也无机会堆雪人、带着孩子们打雪仗,只能通过电视新闻看哪儿哪儿下大雪了,或者透过互联网欣赏那些美丽的雪景。欧洲,火车在雪中穿行雪花很轻很小,在大自然云层中所产生的雪片通常只能长到1.3厘米直径,还不及一枚硬币大。每次下大雪,天空会纷纷扬扬飘下数以万亿计的雪片,这些雪片是什么样子的?它们完美对称吗?世界上存在两片长得完全一样的雪花吗?这些都是许多孩子心中的疑问。要想搞清楚雪花是否完美,我们先得知道雪到底是如何产生的。
六棱柱并不是冰晶的终点。在晶体顶端具有更强的电诱导性,空气中的水分子被这些角吸引,在角上堆积并形成新的结晶。在水汽中的冰晶有这样的生长趋势,新的水分子会不断在冰晶的尖端进行堆积,在其六个角上形成新的分支,于是冰晶渐渐长成了雪花的模样:科学家在实验室环境下对冰晶的尖端施加2000V的电压,使其在-15℃寒冷水汽环境里迅速生长,只花了大约20分钟的时间,在冰晶的尖端就长出一朵美丽的雪花来。在自然状态下,你无法得到完美对称的雪花。