当前位置:首页 » 便宜好货 » 湿度为什么不好检测

湿度为什么不好检测

发布时间: 2023-01-29 06:20:19

⑴ 造成测量温湿度误差的可能原因有哪些

你说的太笼统,误差有很多种,机械误差、测量误差等等。
列举一种,仅供参考。
测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下:

1. 人为因素

由于人为因素所造成的误差,包括误读、误算和视差等。而误读常发生在游标尺、分厘卡等量具。游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm。误算常在计算错误或输入错误数据时所发生。视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.3~0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生 的误差量。为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V形且本尺为凸V形,因此形成两刻划等高。

2. 量具因素

由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素。刻度分划是否准确,必须经由较精密的仪器来校正与追溯。量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用。

3. 力量因素

由于测量时所使用接触力或接触所造成挠曲的误差。依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成。其次,依据赫兹 (Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量

应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度 的断面二次矩为 ,长 的支柱为 ,纵弹性系数分别为 、 ,因此测量力为P时,挠曲量 为 。为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度。除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲。通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点 (Airey Points) 。线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点 (Bessel Points)

4. 测量因素

测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等。余弦误差是发生在测量轴与待测表面成一定倾斜角度 ,如图2-4-5所示其误差量为 , 为实际测量长度。通常,余弦误差会发生在两个测量方向,必须特别小心。例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸。同理,测量外侧时,也需注意取其正确位置。测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆柱或圆球形时应选平面之测砧。阿贝原理 (Abbe’ Law) 为测量仪器的轴线与待测工件之轴线需在一直在线。否则即产生误差,此误差称为阿贝误差。通常,假如测量仪器之轴线与待测工件之轴线无法在一起时,则需尽量缩短其距离,以减少其误差值。若以游标尺测量工件为例,如图2-4-6所示,其误差为 ,因此欲减少游标尺测量误差,需将本尺与游尺之间隙所造成之 角减小及测量时应尽量靠近刻度线。若以量表测量工件为例,如图2-4-7所示其量表之探针为球形,工件为圆柱,两轴心有偏位量 时,其接触的误差量为 。若量表之探针和工件均为平面时,若两平面倾斜一定角度 时,其接触的误差量为 如图2-4-8所示,此误差称为正弦误差。图2-4-9所示为凸轮在机构设计的误差分析图,为了减少磨损,常将从动件的端头设计成半径为 的圆球或圆柱体,两者间的压力角为 ,因此引起误差为。

5. 环境因素

测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着。热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量。但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数 作为补偿,以因应温度材料的热膨胀系数 不同所造成的误差。

⑵ 空气相对湿度测量的准确性与哪些因素有关

和温度有关,相同体积的容器内存放了相同湿度的气体,其中一个容器的温度升高后,其内部气体的湿度就会降低。因为我们所检测的湿度都是以温度为基础的相对湿度,如果是绝对湿度就没有这个问题。

⑶ 环境温度、湿度等因素对仪器测量有什么影响

液闪仪器:温度较低,会改变样本淬灭度,从而对检测结果造成影响;湿度过大,会使仪器本底计数偏高,造成假阳性。
卡式仪器:温度影响较小;湿度过大,会影响仪器探测效率,造成假阴性。
碳13仪器:红外探测元件对温度极其敏感,温度波动较大会使导致检测结果不准确;湿度过大同样会影响检测结果,还会降低仪器的使用寿命。

⑷ 为什么空气湿度的测量至今仍是较为困难的问题

PM2.5 监测能力建设是新环境空气质量标准下空气质量监测体系的重要支撑。PM2.5监测结果将直接作为考核的依据,其结果的准确与否决定污染评价的客观性、计划实施考核的公平性和防治措施的有效性。环境空气中PM2.5 浓度能否测得准,数据是否可靠,区域间是否有可比性,是全国环境监测工作面临的一项重要课题。

我国城市环境空气中PM2.5 监测技术与规范研究

我国PM2.5 监测技术的发展刚刚起步,PM2.5 监测技术正面临前所未有的新挑战,深入开展监测网络优化设计、研究开发新的监测技术、综合运用多种监测手段、严格质量控制已是迫在眉睫的需求。在环保公益性行业科研专项“城市环境空气中PM2.5 监测技术与规范研究”的研究成果基础上编写而成《PM2.5 监测方法与应用》对PM2.5 优化布点方法、PM2.5 手工监测方法、自动监测方法、激光雷达反演PM2.5 浓度方法进行了相关探讨。

1. 综合考虑我国环境空气质量监测现状、大气污染特征、社会经济能力和人口分布特点,建立了适合我国的环境空气颗粒物监测优化布点方法体系。该方法体系可用于指导我国环境空气颗粒物监测优化布点。

2. 对手工监测的滤膜性能、采样器流量、称重条件等进行了研究,提出环境空气中PM2.5 手工监测方法修改建议,为《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》(HJ 656—2013)的修订提供科学依据。

3. 针对目前自动监测设备监测结果影响因素较多、设备种类多的问题,充分考虑相对湿度、挥发性组分等影响因素,分析了相对湿度、温度、采样时间、滤膜纸带性能对监测结果的影响,开展了不同种类自动监测设备的适用性测试,为规范我国的环境空气中PM2.5 连续自动监测提供技术文件,也为制定相关文件提供参考和借鉴,有效提高监测结果的代表性和可比性。

4. 通过建立激光雷达探测颗粒物浓度的反演方法,在中国科学院大气物理研究所铁塔开展观测实验进行验证,并在典型区域进行激光雷达探测颗粒物示范,建立了应用Mie 散射激光雷达反演PM2.5 浓度技术方法,为遥感技术应用于环境管理提供了技术基础。

PM2.5 监测技术发展展望

PM2.5 监测技术是不断发展和完善的,特别是目前我国PM2.5 监测技术处于起步阶段,还有很多问题需要进一步研究:

1. 深入开展监测网络优化设计技术研究。

通过研究高精度监测点位筛选确定技术和点位代表性评估指标体系,在综合考虑多方面的因素和制约条件的前提下,遵循“自上而下,逐级组网,避免重复”原则,组建代表性好的监测网络,同时满足空气质量评价、污染物跨界传输、背景对照的需要。

2. 加强我国PM2.5 监测技术的质量保证和质量控制。

建立标准量值传递体系,研制检定标准粒子和标准尘膜,研发PM2.5 测量参考方法(重量法)的溯源性研究的装置和方法,开展我国PM2.5 监测仪器的检定/校准研究,严格规范行业标准及准入制度;开展对重污染、高湿度等极端天气条件下,PM2.5 监测结果的影响因素、影响程度、不同仪器的适用性研究,研制适合我国国情的监测仪器;建立PM2.5 采样滤膜质量标准及性能评价技术规范,规范生产、检测与品质监管验收程序,明确重量测量、物理性质、化学组分分析所用的滤膜种类和使用范围,规范滤膜的弹性系数、重量稳定性、最大吸湿性、穿透粒度等性能参数取值范围,提高滤膜称重法的可参比度;强化PM2.5 自动监测的质量控制,完善细化PM2.5 自动监测操作规程,规范监测频次、仪器性能、数据质量保证和质量控制、达标分析等全过程的质量控制。

3. 加强对PM2.5 成分和前体物的观测。

PM2.5 成分和前体物测量结果是开展来源解析、污染传输和人体健康影响研究的必要信息,因此需要增加相应手工监测站点,组建国家和区域级的手工监测网络,开展长期PM2.5 组分观测,同时加强超级站的建设,组建国家级超级站自动监测网络。

4. 发展PM2.5 监测新技术,研发高频次、高准确度、高分辨率的立体监测方法和设备。

根据监测目的,综合应用多种监测手段,可利用激光雷达高时空分辨率、高探测灵敏度等优点,开展较大范围的颗粒物浓度分布和气象要素特征的三维立体快速观测;有条件地区可以开展颗粒物粒度谱、离子、碳组分等理化特征在线监测;在研究污染物形成机制、大尺度的水平分布特征、污染物的垂直分布扩散、远距离传输问题时,需利用地面监测与立体监测相结合的技术,综合运用飞行器航空测量、卫星遥感、系留气艇、高空探测气球等空中观测技术,弥补常规地面观测技术仅能捕捉近地面的污染物浓度的缺陷。

总之,未来环境监测目的不再是单纯的污染水平监测,正逐步实现从常规监测到诊断监测、从城市监测到区域监测、从地面监测到立体监测的跨越。PM2.5 监测技术在持续发展和完善的过程中,我们还有很长的路要走。

⑸ 影响温湿度检测的因素有哪些

问题不清晰,不知道问的是检测哪里的温湿度?
若检测空气中的,则气流、你所用的检测设备、时间段等都是影响因素。

⑹ 室内空气湿度如何检测

用湿度计。

湿度计测量全相对湿度的原理:湿球温度计的温度泡用棉纱包裹,棉纱的下端浸入水中,由于水分的蒸发,湿球温度计的温度指示总是低于干球温度计的温度指示。温差与水分蒸发速度(即当时的相对湿度)有关。根据两个温度计的读数,从表或曲线上可以找出空气的相对湿度。

空气湿度可以用空气中水汽的密度来表示,即单位体积空气中水汽的质量。由于很难直接测量空气中的水蒸气密度,而且水蒸气压力随着水蒸气密度的增加而增大,所以通常用空气中的水蒸气压力来表示空气的湿度,即空气的绝对湿度。

(6)湿度为什么不好检测扩展阅读

空气湿度过低,尤其是低于20%时,可吸入颗粒物就会增多,容易造成呼吸系统不适、皮肤干燥等;空气湿度为45%~65%时,病菌不易传播;若高于80%,则会导致细菌、尘螨、霉菌滋生,使人出现呼吸系统不适,免疫力下降等症状。

建议在家中装个湿度计,随时监测空气湿度,也可以通过感官来粗略判断空气湿度情况:如果感到皮肤干燥、眼睛发痒,鼻腔和咽喉发干,可能就是空气湿度过低。

如果感觉闷热,墙上、地板和桌面等存在凝结的水汽,可能湿度过高,应停止使用加湿器,并适当开窗通风,否则可能会引起过敏及哮喘等问题。

⑺ 怎么测试房间里的湿度

可以通过湿度计测试房间里的湿度。测量方法可采用干湿球测量法:

用一对并列装置的、形状完全相同的温度表,一支测气温,称干球温度表,另一支包有保持浸透蒸馏水的脱脂纱布,称湿球温度表。当空气未饱和时,湿球因表面蒸发需要消耗热量,从而使湿球温度下降。与此同时,湿球又从流经湿球的空气中不断取得热量补给。

当湿球因蒸发而消耗的热量和从周围空气中获得的热量相平衡时,湿球温度就不再继续下降,从而出现一个干湿球温度差。干湿球温度差值的大小,主要与当时的空气湿度有关。

当然,干湿球的温差的大小还与其他一些因素有关,如湿球附近的通风速度、气压、湿球大小、湿球润湿方式等有关。可以根据干湿球温度值,并将一些其它因素考虑在内,从理论上推算出当时的空气湿度来。

(7)湿度为什么不好检测扩展阅读

古代空气湿度的测量

我国是最早发明测湿仪器的国家。东汉王充在《论衡·变动篇》中曾经谈到,琴弦变松,天就要下雨。琴弦变松,是天变潮湿、弦线伸长所造成的,表示空气湿度较大。可见,古代的弦琴也可当作原始的空气湿度测量仪器。现代毛发湿度计中的“毛发”,其实就是古代琴弦的微缩和精确。

元末明初娄元礼在《田家五行》一书中也说,如果质量很好的干洁弦线忽然自动变松宽了,那是因为琴床潮湿的缘故;出现这种现象,预示着天将阴雨。他还谈到,琴瑟的弦线所产生的音调如果调不好,也预兆有阴雨天气,这其实也是因为变松宽了的弦线,其音准敏感度降低了,合乎科学道理。

在《史记·天官书》中曾提到一种把土和炭分别挂在天平两侧,以观测挂炭一端天平升降的仪器。这其实就是原始的“湿度计”。原理是:天气干燥了,炭就轻,天平就倾向于土;天气潮湿了,炭就重,天平就倾向于炭。

热点内容
为什么做完面部提拉眼睛不好 发布:2025-09-02 04:12:59 浏览:9
为什么有些人晚上身体很烫 发布:2025-09-02 03:50:48 浏览:322
做馒头机为什么会掉小米粒 发布:2025-09-02 03:43:38 浏览:19
手机卡为什么要限网速 发布:2025-09-02 03:17:26 浏览:239
为什么揉眼睛会揉出水 发布:2025-09-02 03:13:08 浏览:398
绿豆芽的生长方向为什么不一样 发布:2025-09-02 03:01:15 浏览:130
为什么女人喜欢好男人 发布:2025-09-02 02:48:51 浏览:378
为什么盲人的手机提示语速快 发布:2025-09-02 02:23:20 浏览:734
手绘板有压感为什么颜色淡 发布:2025-09-02 02:23:13 浏览:91
苹果12为什么不能全屏拍照 发布:2025-09-02 02:23:11 浏览:684